Topic 1: Static members of classes
Topic 2: Namespaces

Comp Sci 1570 Introduction to C++

MISSOURI

Sy ‘ bomputer Science



Outline

Static
duration

0 Static duration




Outline

0 Static duration
Review: variables in functions




Review: Static variables in functions

e Recall, static duration variables are only created (and
initialized) once, and then they are persisted beyond the
scope of the function call, throughout the life of the
program.

e Review the code from previously




Static members of a class

e Static members of a class are not associated with the
objects of the class; they are independent objects with
static storage duration or regular functions defined in
namespace scope, only once in the program.

e The static keyword is only used with the declaration of a
static member, inside the class definition, but not with the
definition of that static member, for example:

// declaration (uses 'static ')
class X { static int n; };

// definition (does not use 'static ')
int X::n = 1;




Outline

0 Static duration

Member variables of classes




Static member variables in a class

A static data member of a class is also known as a “class
variable”, because there is only one common variable for

all the objects of that same class, sharing the same value:
i.e., its value is not different from one object of this class
to another.

Static member variables (data members) are not initialied
using constructor; they must be initialized explicitly
outside the class (unless they're const integral or enum).
Can be accessed either via object.s_var or via

classname :: s_var, but the latter is preferred, since it is
congruent with the design intentions (to be data for the
whole class)

Check out examples



Outline

0 Static duration

Member functions of classes




Static member functions of a class

You just learned that static member variables are member
variables that belong to the class rather than objects of
the class.

If the static member variables are public, we can access
them directly using the class name and the scope
resolution operator.

But what if the static member variables are private?
Use a static member function!



Static member functions of a class

Static member functions are not associated with any
object.

Thus, when called, they have no this pointer.

Second, static member functions can only access static
member variables. They can not access non-static member
variables. This is because non-static member variables
must belong to a class object, and static member
functions have no class object to work with!

Because static member functions are not attached to a
particular object, they can be called directly by using the
class name and the scope resolution operator.

Like static member variables, they can also be called
through objects of the class type, though this is not
recommended.

Check out examples



Outline

Namespaces

@ Namespaces




Outline

@ Namespaces
Background




Scope

int foo; // global variable

int some_function ()

{

int bar; // local variable
bar = 0;
}

int other_function ()

{
foo = 1, // ok: foo is a global variable

bar = 2; // wrong: bar is not accessible




In each scope, a name can represent one entity

int some_function ()
{
int x;
x = 0;
double x; //name already used in scope
x = 0.0;




Declarative regions

#include <iostream>

using namespace std;
void orp(int);
int ro = 10;
—_ int main()
(5]
S e &
= int goo; <N
E = i E
=) =2 for (int i = 0; 1 < ro; i++) | =
= o { PS5
- .
E o G int temp = 0; u%
o =22 ++4+ .
& E< int goo = temp * i; 5
= -
g g et =
B } =]
2 a &
_8 return @;
g %
= void orp(int ex) &
B { &
a g int m; =z
& int m; é-
D
=g { &
L9 int ro = 2; =
z 8 o ; g
§ é +++ i
= } X
(o3 Q
L] e aQ
A } &




Potential scope of an object

#include <iostream>
using namespace std;

void orp(int);

int ro = 10;
int main()
int goo;
Q-w
for (int i = 0; 1 < ro; it4) =
{ =)
int temp = 0; w1 =3
o o g @
= X ) = i=}
e int goo = temp * i a ke
g 4 e, @
]
I } " s
3 = S =
= @ return @; =]
8 =n
E 1<)
8 3 void orp(int ex)
5]
& .
int m;
{
int ro = 2;
et




Outline

@ Namespaces

Making namespaces




Making new namespaces

Namespaces provide a method for preventing name
conflicts in large projects.

The namespace keyword allows you to create a new scope.
Symbols declared inside a namespace block are placed in a
named scope that prevents them from being mistaken for
identically-named symbols in other scopes.

Multiple namespace blocks with the same name are
allowed, and these can be in multiple files. All declarations
within those blocks are declared in the named scope.

The namespace definition must be done at global scope,
or nested inside another namespace.



General syntax

namespace namespace_name

{
}

// code declarations

// code could be a variable or function
namespace_name :: code;



Outline

@ Namespaces

Acessing namespaces




Three ways to access a namespace

@ Scope Resolution (preferred)
@® The using directive (not preferred)
©® The using declaration (preferred)

See code examples




Namespaces

Current guidelines

Use variables in a named namespace instead of using
external global variables.

Use variables in an unnamed namespace instead of using
static global variables.

If you develop a library of functions or classes, place them
in a namespace.

Use the using directive only as a temporary means of
converting old code to namespace usage.

Don't use using directives in header files; doing so
conceals which names are being made available. Also, the
ordering of header files may affect behavior. If you use a
using directive, place it after all the preprocessor #include
directives.

Preferentially import names by using the scope-resolution
operator or a using declaration.

Preferentially use local scope instead of global scope for
using declarations.



	Static duration
	Review: variables in functions
	Member variables of classes
	Member functions of classes

	Namespaces
	Background
	Making namespaces
	Acessing namespaces


