
Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Topic 1: Static members of classes
Topic 2: Namespaces

Comp Sci 1570 Introduction to C++

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Review: Static variables in functions

• Recall, static duration variables are only created (and
initialized) once, and then they are persisted beyond the
scope of the function call, throughout the life of the
program.

• Review the code from previously

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Static members of a class

• Static members of a class are not associated with the
objects of the class; they are independent objects with
static storage duration or regular functions defined in
namespace scope, only once in the program.

• The static keyword is only used with the declaration of a
static member, inside the class definition, but not with the
definition of that static member, for example:

// d e c l a r a t i o n (u s e s ’ s t a t i c ’)
c l a s s X { s t a t i c i n t n ; } ;

// d e f i n i t i o n (does not use ’ s t a t i c ’)
i n t X : : n = 1 ;

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Static member variables in a class

• A static data member of a class is also known as a “class
variable”, because there is only one common variable for
all the objects of that same class, sharing the same value:
i.e., its value is not different from one object of this class
to another.

• Static member variables (data members) are not initialied
using constructor; they must be initialized explicitly
outside the class (unless they’re const integral or enum).

• Can be accessed either via object.s var or via
classname :: s var , but the latter is preferred, since it is
congruent with the design intentions (to be data for the
whole class)

• Check out examples

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Static member functions of a class

• You just learned that static member variables are member
variables that belong to the class rather than objects of
the class.

• If the static member variables are public, we can access
them directly using the class name and the scope
resolution operator.

• But what if the static member variables are private?

• Use a static member function!

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Static member functions of a class

• Static member functions are not associated with any
object.

• Thus, when called, they have no this pointer.

• Second, static member functions can only access static
member variables. They can not access non-static member
variables. This is because non-static member variables
must belong to a class object, and static member
functions have no class object to work with!

• Because static member functions are not attached to a
particular object, they can be called directly by using the
class name and the scope resolution operator.

• Like static member variables, they can also be called
through objects of the class type, though this is not
recommended.

• Check out examples

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Scope

i n t f o o ; // g l o b a l v a r i a b l e

i n t s o m e f u n c t i o n ()
{

i n t bar ; // l o c a l v a r i a b l e
bar = 0 ;

}

i n t o t h e r f u n c t i o n ()
{

f o o = 1 ; // ok : foo i s a g l o b a l v a r i a b l e
bar = 2 ; // wrong : bar i s not a c c e s s i b l e

}

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

In each scope, a name can represent one entity

i n t s o m e f u n c t i o n ()
{

i n t x ;
x = 0 ;
double x ; //name a l r e a d y used i n scope
x = 0 . 0 ;

}

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Declarative regions

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Potential scope of an object

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Making new namespaces

• Namespaces provide a method for preventing name
conflicts in large projects.

• The namespace keyword allows you to create a new scope.

• Symbols declared inside a namespace block are placed in a
named scope that prevents them from being mistaken for
identically-named symbols in other scopes.

• Multiple namespace blocks with the same name are
allowed, and these can be in multiple files. All declarations
within those blocks are declared in the named scope.

• The namespace definition must be done at global scope,
or nested inside another namespace.

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

General syntax

namespace namespace name
{

// code d e c l a r a t i o n s
}

// code cou ld be a v a r i a b l e o r f u n c t i o n
namespace name : : code ;

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Outline

1 Static duration
Review: variables in functions
Member variables of classes
Member functions of classes

2 Namespaces
Background

Scope
Declarative regions
Potential Scope

Making namespaces
Acessing namespaces

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Three ways to access a namespace

1 Scope Resolution (preferred)

2 The using directive (not preferred)

3 The using declaration (preferred)

See code examples

Static
duration

Review:
variables in
functions

Member
variables of
classes

Member
functions of
classes

Namespaces

Background

Scope

Declarative
regions

Potential Scope

Making
namespaces

Acessing
namespaces

Current guidelines

• Use variables in a named namespace instead of using
external global variables.

• Use variables in an unnamed namespace instead of using
static global variables.

• If you develop a library of functions or classes, place them
in a namespace.

• Use the using directive only as a temporary means of
converting old code to namespace usage.

• Don’t use using directives in header files; doing so
conceals which names are being made available. Also, the
ordering of header files may affect behavior. If you use a
using directive, place it after all the preprocessor #include
directives.

• Preferentially import names by using the scope-resolution
operator or a using declaration.

• Preferentially use local scope instead of global scope for
using declarations.

	Static duration
	Review: variables in functions
	Member variables of classes
	Member functions of classes

	Namespaces
	Background
	Making namespaces
	Acessing namespaces

