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Definition of a pointer

• A pointer is a variable whose value is the address of
another variable.

• What is an address?

• How do you get the memory address of a variable?
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Address of an int?

How do you get the memory address of an int for example?

i n t genePos = 4 3 5 ;
cout << &genePos << e n d l ; // 0 x7 f f cb158c144

• & is the ”address of” operator

• What is that weird number?

• How is memory structured?
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Memory as a tape

i n t genePos = 4 3 5 ;
cout << &genePos << e n d l ; // 0 x7 f f cb158c144

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

0x7ffcb158c150

0x7ffcb158c154

• Variable name is an alias for address,
accessible via the & operator
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What is a pointer?

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
cout << p1 << e n d l ; // 0 x7 f f cb158c144

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

0x7ffcb158c154

• p1 is a pointer – a variable whose value is the address of
another variable.
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Pointer declaration (type specific)

• Like other variables or constants, pointers must be
declared

• General pointer variable declaration is:
type ∗ pointerName = &varName
where type is the pointer’s base type

• Pointers have a type (of the thing they address) restriction
(e.g., type is ”pointer to an int” or ”pointer to a double”)

• Can cast between pointer types, e.g., static cast, but
should not generally to non-pointer types.

Declaring types of pointers:

i n t ∗numberObject ;
char ∗ c h a r a c t e r O b j e c t ;
double ∗ d e c i m a l O b j e c t ;
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Pointer declaration

i n t ∗p1 , ∗p2 ; // both p1 and p2 a r e p o i n t e r s
i n t ∗p1 , p2 ; // p2 i s not a p o i n t e r !
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Pointer initialization variations

i n t genePos ; // whas i s the v a l u e o f genePos ?
i n t ∗p1 = &genePos ;

i n t genePos ;
i n t ∗p1 ; // what does p1 po i n t to ?
p1 = &genePos ;

i n t genePos ;
i n t ∗p1 = &genePos ;
i n t ∗p2 = p1 ;

// 0 , NULL , or n u l l p t r f o r no t a r g e t
i n t genePos ;
i n t ∗p1 = 0 ;
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Contents of object being pointed to

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
cout << ∗p1 << e n d l ; // outpu t s : 435
i n t x = ∗p1 ;
cout << x << e n d l ; // outpu t s : 435

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

0x7ffcb158c154

• Contents of operator also known as derefernece operator, *

• This is not the same as the * used during initialization;
the * on lines 2 and 3 are different
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Assignment via dereferenced pointer

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
cout << ∗p1 << e n d l ; // outpu t s : 435
∗p1 = 2 4 8 ;
cout << ∗p1 << e n d l ; // outpu t s : 248

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435 changed to 248

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

0x7ffcb158c154
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Why are pointers useful?

• Used for new memory during execution,
e.g., dynamic memory

• Can refer/pass large data structures without copying,
for efficiency

• Can specify relationships among data,
e.g., linked lists coming up
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Address of address of?

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
i n t ∗∗metaP = &p1 ;
cout << metaP << e n d l ; // ??
cout << ∗metaP << e n d l ; // ??
cout << ∗∗metaP << e n d l ; // ??

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

metaP 0x7ffcb158c154 0x7ffcb158c150

Remember, ** on lines 3 and 6 are different,
as are the * on lines 2 and 5.
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What about these statements?

cout << &∗p1 << e n d l ; // ??
cout << ∗&p1 << e n d l ; // ??
cout << &∗&∗p1 << e n d l ; // ??
cout << ∗&∗&p1 << e n d l ; // ??

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

metaP 0x7ffcb158c154 0x7ffcb158c150
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Pointers and arrays

What is an array really?

i n t a [ 6 ] = {1 , 7 , 3 , 4 , 2 , 8} ;
cout << a [ 2 ] << e n d l ; // ou tpu t s : 3
cout << a << e n d l ; // ??
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Pointers and arrays

• Arrays are like pointers, but const, addressing the first
element of the array

• Below, mypointer can be assigned a different address, but
myarray can’t.

i n t myarray [ 2 0 ] ;
cout << myarray << e n d l ; // 0 x7 f f cb158c140

i n t ∗m y p o i n t e r ;

// Va l id , but why no & ope r a t o r ?
// R e c a l l p a s s i n g a r r a y s by r e f e r e n c e ?
m y p o i n t e r = myarray ;
cout << m y p o i n t e r << e n d l ; // 0 x7 f f cb158c140

// I n v a l i d , why?
myarray = m y p o i n t e r ;
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Pointers and arrays

• The following have the same result:

i n t a [ 6 ] = {1 , 7 , 3 , 4 , 2 , 8} ;

a [ 5 ] = 0 ; // a [ o f f s e t o f 5 ] = 0
cout << a [ 5 ] << e n d l ; // ou tpu t s : 0
cout << ∗( a+5)<< e n d l ; // outpu t s : 0

∗( a+5) = 1 ; // a [ o f f s e t o f 5 ] = 1
cout << a [ 5 ] << e n d l ; // ou tpu t s : 1
cout << ∗( a+5) << e n d l ; // ou tpu t s : 1

Why does adding 5 to array a work?
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Pointer arithmetic

i n t a [ 6 ] = {1 , 7 , 3 , 4 , 2 , 8} ;
i n t ∗pa = a ;
cout << pa + 2 << e n d l ; // 0 x7 f f cb158c148
cout << ∗( pa + 2) << e n d l ; // 3
cout << pa++ << e n d l ; // 0 x7 f f cb158c144
cout << ∗pa << e n d l ; // 7

Name of variable Storage address Value

a[0] or *a 0x7ffcb158c140 1

a[1] or *(a+1) 0x7ffcb158c144 7

a[2] or *(a+2) 0x7ffcb158c148 3

a[3] or *(a+3) 0x7ffcb158c14c 4

a[4] or *(a+4) 0x7ffcb158c150 2

a[5] or *(a+5) 0x7ffcb158c154 8

a 0x... 0x7ffcb158c140

pa 0x... 0x7ffcb158c140

• Why increments of 4?
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Pointer and array arithmetic

i n t ∗pa = a ;
cout << pa + 2 << e n d l ; // 0 x7 f f cb158c148
cout << a + 2 << e n d l ; // 0 x7 f f cb158c148

cout << ∗( pa+2) << e n d l ; // 3
cout << ∗( a+2) << e n d l ; // 3

cout << pa [ 2 ] << e n d l ; // 3
cout << a [ 2 ] << e n d l ; // 3

cout << pa++ << e n d l ; // 0 x7 f f cb158c144
// cout << a++ << end l ; // not v a l i d , a r r a y con s t

cout << ∗pa << e n d l ; // 7
cout << ∗a << e n d l ; // 1
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Each type is a different size

Use sizeof(p) without the ’*’ operator to determine the
memory utilized on your system for types like int, which are
different per system.
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Messy pointer arithmetic

Postfix operators (- - , ++), have higher precedence than
prefix operators (dereference *).

i n t genePos [ 3 ] = {4 3 5 , 1 2 3 , 9 8 7} ;
i n t ∗p = genePos ;
cout << p << e n d l ; // 0 x7 f f e35b36ee0
cout << ∗( p++) << p << e n d l ; // 435 0 x7 f f e35b36ee4
p = genePos ;
cout << ∗p++ << p << e n d l ; // 435 0 x7 f f e35b36ee4
p = genePos ;
cout << ∗(++p ) << p << e n d l ; // 123 0 x7 f f e35b36ee4
p = genePos ;
cout << ∗++p << p << e n d l ; // 123 0 x7 f f e35b36ee4
p = genePos ;
cout << ++(∗p ) << p << e n d l ; // 436 x7 f f e35b36ee0
p = genePos ;
cout << ++∗p << p << e n d l ; // 437 x7 f f e35b36ee0
p = genePos ;
cout << (∗p)++ << p << e n d l ; // 437 x7 f f e35b36ee0
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Next time

Dynamic memory (heap, stack, garbage collection, dangling
pointers), pointers to classes and structs, const pointers, arrays
of pointers, void pointers, pointers to functions, returning
pointers from functions
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