
Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointers

Comp Sci 1570 Introduction to C++



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Definition of a pointer

• A pointer is a variable whose value is the address of
another variable.

• What is an address?

• How do you get the memory address of a variable?



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Address of an int?

How do you get the memory address of an int for example?

i n t genePos = 4 3 5 ;
cout << &genePos << e n d l ; // 0 x7 f f cb158c144

• & is the ”address of” operator

• What is that weird number?

• How is memory structured?



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Memory as a tape

i n t genePos = 4 3 5 ;
cout << &genePos << e n d l ; // 0 x7 f f cb158c144

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

0x7ffcb158c150

0x7ffcb158c154

• Variable name is an alias for address,
accessible via the & operator



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

What is a pointer?

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
cout << p1 << e n d l ; // 0 x7 f f cb158c144

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

0x7ffcb158c154

• p1 is a pointer – a variable whose value is the address of
another variable.



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointer declaration (type specific)

• Like other variables or constants, pointers must be
declared

• General pointer variable declaration is:
type ∗ pointerName = &varName
where type is the pointer’s base type

• Pointers have a type (of the thing they address) restriction
(e.g., type is ”pointer to an int” or ”pointer to a double”)

• Can cast between pointer types, e.g., static cast, but
should not generally to non-pointer types.

Declaring types of pointers:

i n t ∗numberObject ;
char ∗ c h a r a c t e r O b j e c t ;
double ∗ d e c i m a l O b j e c t ;



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointer declaration

i n t ∗p1 , ∗p2 ; // both p1 and p2 a r e p o i n t e r s
i n t ∗p1 , p2 ; // p2 i s not a p o i n t e r !



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointer initialization variations

i n t genePos ; // whas i s the v a l u e o f genePos ?
i n t ∗p1 = &genePos ;

i n t genePos ;
i n t ∗p1 ; // what does p1 po i n t to ?
p1 = &genePos ;

i n t genePos ;
i n t ∗p1 = &genePos ;
i n t ∗p2 = p1 ;

// 0 , NULL , or n u l l p t r f o r no t a r g e t
i n t genePos ;
i n t ∗p1 = 0 ;



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Contents of object being pointed to

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
cout << ∗p1 << e n d l ; // outpu t s : 435
i n t x = ∗p1 ;
cout << x << e n d l ; // outpu t s : 435

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

0x7ffcb158c154

• Contents of operator also known as derefernece operator, *

• This is not the same as the * used during initialization;
the * on lines 2 and 3 are different



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Assignment via dereferenced pointer

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
cout << ∗p1 << e n d l ; // outpu t s : 435
∗p1 = 2 4 8 ;
cout << ∗p1 << e n d l ; // outpu t s : 248

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435 changed to 248

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

0x7ffcb158c154



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Why are pointers useful?

• Used for new memory during execution,
e.g., dynamic memory

• Can refer/pass large data structures without copying,
for efficiency

• Can specify relationships among data,
e.g., linked lists coming up



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Address of address of?

i n t genePos = 4 3 5 ;
i n t ∗p1 = &genePos ;
i n t ∗∗metaP = &p1 ;
cout << metaP << e n d l ; // ??
cout << ∗metaP << e n d l ; // ??
cout << ∗∗metaP << e n d l ; // ??

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

metaP 0x7ffcb158c154 0x7ffcb158c150

Remember, ** on lines 3 and 6 are different,
as are the * on lines 2 and 5.



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

What about these statements?

cout << &∗p1 << e n d l ; // ??
cout << ∗&p1 << e n d l ; // ??
cout << &∗&∗p1 << e n d l ; // ??
cout << ∗&∗&p1 << e n d l ; // ??

Name of variable Storage address Value

0x7ffcb158c140

genePos 0x7ffcb158c144 435

0x7ffcb158c148

0x7ffcb158c14c

p1 0x7ffcb158c150 0x7ffcb158c144

metaP 0x7ffcb158c154 0x7ffcb158c150



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointers and arrays

What is an array really?

i n t a [ 6 ] = {1 , 7 , 3 , 4 , 2 , 8} ;
cout << a [ 2 ] << e n d l ; // ou tpu t s : 3
cout << a << e n d l ; // ??



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointers and arrays

• Arrays are like pointers, but const, addressing the first
element of the array

• Below, mypointer can be assigned a different address, but
myarray can’t.

i n t myarray [ 2 0 ] ;
cout << myarray << e n d l ; // 0 x7 f f cb158c140

i n t ∗m y p o i n t e r ;

// Va l id , but why no & ope r a t o r ?
// R e c a l l p a s s i n g a r r a y s by r e f e r e n c e ?
m y p o i n t e r = myarray ;
cout << m y p o i n t e r << e n d l ; // 0 x7 f f cb158c140

// I n v a l i d , why?
myarray = m y p o i n t e r ;



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointers and arrays

• The following have the same result:

i n t a [ 6 ] = {1 , 7 , 3 , 4 , 2 , 8} ;

a [ 5 ] = 0 ; // a [ o f f s e t o f 5 ] = 0
cout << a [ 5 ] << e n d l ; // ou tpu t s : 0
cout << ∗( a+5)<< e n d l ; // outpu t s : 0

∗( a+5) = 1 ; // a [ o f f s e t o f 5 ] = 1
cout << a [ 5 ] << e n d l ; // ou tpu t s : 1
cout << ∗( a+5) << e n d l ; // ou tpu t s : 1

Why does adding 5 to array a work?



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Outline

1 Definitions

2 Addresses
Memory

3 Pointers
Declaration
Initialization
Dereference

Dereference assignment
Uses
Pointers to pointers
Careful cancellation

4 Pointers and arrays
What is an array?
Array and pointer indexing

5 Pointer arithmetic
Type sizing
Operator precedence



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointer arithmetic

i n t a [ 6 ] = {1 , 7 , 3 , 4 , 2 , 8} ;
i n t ∗pa = a ;
cout << pa + 2 << e n d l ; // 0 x7 f f cb158c148
cout << ∗( pa + 2) << e n d l ; // 3
cout << pa++ << e n d l ; // 0 x7 f f cb158c144
cout << ∗pa << e n d l ; // 7

Name of variable Storage address Value

a[0] or *a 0x7ffcb158c140 1

a[1] or *(a+1) 0x7ffcb158c144 7

a[2] or *(a+2) 0x7ffcb158c148 3

a[3] or *(a+3) 0x7ffcb158c14c 4

a[4] or *(a+4) 0x7ffcb158c150 2

a[5] or *(a+5) 0x7ffcb158c154 8

a 0x... 0x7ffcb158c140

pa 0x... 0x7ffcb158c140

• Why increments of 4?



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Pointer and array arithmetic

i n t ∗pa = a ;
cout << pa + 2 << e n d l ; // 0 x7 f f cb158c148
cout << a + 2 << e n d l ; // 0 x7 f f cb158c148

cout << ∗( pa+2) << e n d l ; // 3
cout << ∗( a+2) << e n d l ; // 3

cout << pa [ 2 ] << e n d l ; // 3
cout << a [ 2 ] << e n d l ; // 3

cout << pa++ << e n d l ; // 0 x7 f f cb158c144
// cout << a++ << end l ; // not v a l i d , a r r a y con s t

cout << ∗pa << e n d l ; // 7
cout << ∗a << e n d l ; // 1



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Each type is a different size

Use sizeof(p) without the ’*’ operator to determine the
memory utilized on your system for types like int, which are
different per system.



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Messy pointer arithmetic

Postfix operators (- - , ++), have higher precedence than
prefix operators (dereference *).

i n t genePos [ 3 ] = {4 3 5 , 1 2 3 , 9 8 7} ;
i n t ∗p = genePos ;
cout << p << e n d l ; // 0 x7 f f e35b36ee0
cout << ∗( p++) << p << e n d l ; // 435 0 x7 f f e35b36ee4
p = genePos ;
cout << ∗p++ << p << e n d l ; // 435 0 x7 f f e35b36ee4
p = genePos ;
cout << ∗(++p ) << p << e n d l ; // 123 0 x7 f f e35b36ee4
p = genePos ;
cout << ∗++p << p << e n d l ; // 123 0 x7 f f e35b36ee4
p = genePos ;
cout << ++(∗p ) << p << e n d l ; // 436 x7 f f e35b36ee0
p = genePos ;
cout << ++∗p << p << e n d l ; // 437 x7 f f e35b36ee0
p = genePos ;
cout << (∗p)++ << p << e n d l ; // 437 x7 f f e35b36ee0



Definitions

Addresses

Memory

Pointers

Declaration

Initialization

Dereference

Dereference
assignment

Uses

Pointers to
pointers

Careful
cancellation

Pointers and
arrays

What is an
array?

Array and
pointer indexing

Pointer
arithmetic

Type sizing

Operator
precedence

Next time

Dynamic memory (heap, stack, garbage collection, dangling
pointers), pointers to classes and structs, const pointers, arrays
of pointers, void pointers, pointers to functions, returning
pointers from functions


	Definitions
	Addresses
	Memory

	Pointers
	Declaration
	Initialization
	Dereference
	Uses
	Pointers to pointers
	Careful cancellation

	Pointers and arrays
	What is an array?
	Array and pointer indexing

	Pointer arithmetic

