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Like other general-purpose operating systems, Linux’s wide range of 

features presents a broad attack surface. Even so, by leveraging native 

Linux security controls, carefully configuring Linux applications, and 

deploying certain add-on security packages, you can create highly secure 

Linux systems. 

 

25.1  INTRODUCTION 
 

Since Linus Torvalds created Linux in 1991, more or less on a whim, Linux 

has evolved into one of the world’s most popular and versatile operating 

systems. Linux is free, open-sourced, and available in a wide variety of 

“distributions” targeted at almost every usage scenario imaginable. These 

distributions range from conservative, commercially supported versions such 

as Red Hat Enterprise Linux; to cutting-edge, completely free versions such 

as Ubuntu; to stripped-down but hyperstable “embedded” versions 

(designed for use in appliances and consumer products) such as uClinux. 

 The study and practice of Linux security therefore has wide-ranging 

uses and ramifications. New exploits against popular Linux applications 

affect many thousands of users around the world. New Linux security tools 

and techniques have just as profound of an impact, albeit a much more 

constructive one. 

 In this chapter we’ll examine the Discretionary Access Control based 

security model and architecture common to all Linux distributions and to 

most other UNIX-derived and UNIX-like operating systems (and also, to a 

surprising degree, to Microsoft Windows). We’ll discuss the strengths and 

weaknesses of this ubiquitous model; typical vulnerabilities and exploits in 

Linux; best practices for mitigating those threats; and improvements to the 

Linux security model that are only slowly gaining popularity but that hold the 

promise to correct decades-old shortcomings in this platform. 



 

25.2  LINUX’S SECURITY MODEL 
 

Linux’s traditional security model can be summed up quite succinctly: people 

or processes with “root” privileges can do anything; other accounts can do 

much less.  

 From the attacker’s perspective, the challenge in cracking a Linux 

system therefore boils down to gaining root privileges. Once that happens, 

attackers can erase or edit logs; hide their processes, files, and directories; 

and basically redefine the reality of the system as experienced by its 

administrators and users. Thus, as it’s most commonly practiced, Linux 

security (and UNIX security in general) is a game of “root takes all.” 

 How can such a powerful operating system get by with such a limited 

security model? In fairness, many Linux system administrators fail to take 

full advantage of the security features available to them (features we’re 

about explore in depth). People can and do run robust, secure Linux systems 

by making careful use of native Linux security controls, plus selected add-on 

tools such as sudo or Tripwire. However, the crux of the problem of Linux 

security in general is that like the UNIX operating systems on which it was 

based, Linux’s security model relies on Discretionary Access Controls 

(DAC). 

 In the Linux DAC system, there are users, each of which belongs to one 

or more groups; and there are also objects: files and directories. Users 

read, write, and execute these objects, based on the objects’ permissions, 

of which each object has three sets: one each defining the permissions for 

the object’s user-owner, group-owner, and “other” (everyone else). These 

permissions are enforced by the Linux kernel, the “brain” of the operating 

system. 



 Because a process/program is actually just a file that gets copied into 

executable memory when run, permissions come into play twice with 

processes. Prior to being executed, a program’s file-permissions restrict who 

can execute, access, or change it. When running, a process normally “runs 

as” (with the identity of) the user and group of the person or process that 

executed it.  

 Because processes “act as” users, if a running process attempts to read, 

write, or execute some other object, the kernel will first evaluate that 

object’s permissions against the process’s user and group identity, just as 

though the process was an actual human user. This basic transaction, 

wherein a subject (user or process) attempts some action (read, write, 

execute) against some object (file, directory, special file), is illustrated in 

Figure 25.1. 

 Whoever owns an object can set or change its permissions. Herein lies 

the Linux DAC model’s real weakness: The system superuser account, 

called “root,” has the ability to both take ownership and change the 

permissions of all objects in the system. And as it happens, it’s not 

uncommon for both processes and administrator-users to routinely run with 

root privileges, in ways that provide attackers with opportunities to hijack 

those privileges. 

 Those are the basic concepts behind the Linux DAC model. The same 

concepts in a different arrangement will come into play later when we 

examine Mandatory Access Controls such as SELinux. Now let’s take a closer 

look at how the Linux DAC implementation actually works.  



(User or
Process)

 (file, directory, or 
special file)

 Object Subject Action
(read, write, 
execute/use)

Kernel

Object
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Example: 
user-owner = full

group-owner = full
others = read-only

Figure 25.1   Linux Security Transactions  
 

25.3  THE LINUX DAC IN DEPTH: FILE-SYSTEM SECURITY 
 

So far, we haven’t said anything about memory, device drivers, named 

pipes, and other system resources. Isn’t there more to system security than 

users, files, and directories? Yes and no: In a sense, Linux treats everything 

as a file.  

 Documents, pictures, and even executable programs are very easy to 

conceptualize as files on your hard disk. But although we think of a directory 

as a container of files, in UNIX a directory is actually itself a file containing a 

list of other files.  



 Similarly, the CD-ROM drive attached to your system seems tangible 

enough, but to the Linux kernel, it too is a file: the "special" device-file 

/dev/cdrom. To send data from or write data to the CD-ROM drive, the Linux 

kernel actually reads to and writes from this special file. (Actually, on most 

systems, "/dev/cdrom" is a symbolic link to /dev/hdb or some other special 

file. And a symbolic link is in turn nothing more than a file that contains a 

pointer to another file.) 

 Other special files, such as named pipes, act as input/output (I/O) 

"conduits," allowing one process or program to pass data to another. One 

common example of a named pipe on Linux systems is /dev/urandom: When 

a program reads this file, /dev/urandom returns random characters from the 

kernel's random number generator.  

 These examples illustrate how in Linux/UNIX, nearly everything is 

represented by a file. Once you understand this, it's much easier to 

understand why file-system security is such a big deal (and how it works). 

 

Users, Groups, and Permissions 
There are two things on a UNIX system that aren't represented by files: user 

accounts and group accounts, which for short we can call users and 

groups. (Various files contain information about a system's users and 

groups, but none of those files actually represents them.)  

 A user account represents someone or something capable of using files. 

As we saw in the previous section, a user account can be associated both 

with actual human beings and with processes. The standard Linux user 

account "lp," for example, is used by the Line Printer Daemon (lpd): the lpd 

program runs as the user lp. 

 A group account is simply a list of user accounts. Each user account is 

defined with a main group membership, but may in fact belong to as many 

groups as you want or need it to. For example, the user "maestro" may have 



a main group membership in "conductors" and also belong to the group 

"pianists."  

 A user's main group membership is specified in the user account's entry 

in /etc/password; you can add that user to additional groups by editing 

/etc/group and adding the username to the end of the entry for each group 

the user needs to belong to, or via the usermod command [see the 

usermod(8) manpage for more information]. 

 Listing 25-1 shows "maestro"'s entry in the file /etc/password, and 

Listing 25-2 shows part of the corresponding /etc/group file: 

 

  maestro:x:200:100:Maestro Edward Hizzersands:/home/maestro:/bin/bash 

Listing 25-1: An /etc/password Entry For the User "maestro" 
 
  conductors:x:100: 
  pianists:x:102:maestro,volodya 

Listing 25-2: Two /etc/group Entries 
 

 In Listing 25-1, we see that the first field contains the name of the user 

account, "maestro;" the second field ("x") is a placeholder for maestro's 

password (which is actually stored in /etc/shadow); the third field shows 

maestro's numeric userid (or "uid," in this case "200"); and the fourth field 

shows the numeric groupid (or "gid," in this case "100") of maestro's main 

group membership. The remaining fields specify a comment, maestro's 

home directory, and maestro's default login shell. 

 In Listing 25-2, from /etc/group, each line simply contains a group-

name, a group-password (usually unused — "x" is a placeholder), and 

numeric group-id (gid), and a comma-delimited list of users with 

"secondary" memberships in the group. Thus we see that the group 

"conductors" has a gid of "100", which corresponds to the gid specified as 

maestro's main group in Listing 25-1; and also that the group "pianists" 



includes the user "maestro" (plus another named "volodya") as a secondary 

member. 

 The simplest way to modify /etc/password and /etc/group in order to 

create, modify, and delete user accounts is via the commands useradd, 

usermod, and userdel, respectively. All three of these commands can be 

used to set and modify group-memberships, and all three commands are 

well documented in their respective manpages. (To see a quick usage 

summary you can also type the command followed by "--help," for example, 

"useradd --help".) 

 So we've got user accounts, which are associated with different group 

accounts. Just what is all this good for? 

 

Simple File Permissions 
Each file on a UNIX system (which, as we've seen, means "practically every 

single thing on a UNIX system") has two owners: a user and a group, each 

with its own set of permissions that specify what the user or group may do 

with the file (read it, write to it, or delete it, and execute it). A third set of 

permissions pertains to other, that is, user accounts that don't own the file 

or belong to the group that owns it.  

 Listing 25-3 shows a "long file-listing" for the file 

/home/maestro/baton_dealers.txt: 

 

  -rw-rw-r--  1  maestro  conductors  35414  Mar 25 01:38 baton_dealers.txt 

Listing 25-3: File-Listing Showing Permissions 
 

 Permissions are listed in the order "user permissions, group 

permissions, other permissions." Thus we see that for the file shown in 

Listing 25-3, its user-owner ("maestro") may read and write/delete the file 

("rw-"); its group-owner ("conductors") may also read and write/delete the 



file ("rw-"); but that other users (who are neither "maestro" nor members of 

"conductors") may only read the file. 

 There's a third permission besides "read" and "write": "execute," 

denoted by "x" (when set). If maestro writes a shell script named 

"punish_bassoonists.sh", and if he sets its permissions to "-rwxrw-r--", then 

maestro will be able to execute his script by entering the name of the script 

at the command line. If, however, he forgets to do so, he won't be able to 

run the script, even though he owns it. Permissions are usually set via the 

"chmod" command (short for "change mode").  

 

Directory Permissions 
Directory permissions work slightly differently from permissions on regular 

files. "Read" and "write" are similar; for directories these permissions 

translate to "list the directory's contents" and "create or delete files within 

the directory", respectively. "Execute" is less intuitive; for directories, 

"execute" translates to "use anything within or change working directory to 

this directory". 

 That is, if a user or group has execute permissions on a given directory, 

the user or group can list that directory's contents, read that directory's files 

(assuming those individual files' own permissions include this), and change 

its own working directory to that directory, as with the command "cd". If a 

user or group does not have execute permissions on a given directory, its 

will be unable to list or read anything in it, regardless of the permissions set 

on the things inside.  

 (Note that if you lack execute permissions on a directory but do have 

read permissions on an the directory, and you try to list its contents with ls, 

you will receive an error message that, in fact, lists the directory's contents. 

But this doesn't work if you have neither read nor execute permissions on 

the directory.) 



 Suppose our example system has a user named "biff" who belongs to 

the group "drummers". And suppose further that his home directory contains 

a directory called "extreme_casseroles" that he wishes to share with his 

fellow percussionists. Listing 25-4 shows how biff might set that directory's 

permissions: 

 

  bash-$ chmod g+rx extreme_casseroles 
  bash-$ ls -l extreme_casseroles 
  drwxr-x---  8  biff  drummers  288  Mar 25 01:38 extreme_casseroles 

Listing 25-4: A Group-Readable Directory 
 

 Per Listing 25-4, only biff has the ability to create, change, or delete 

files inside extreme_casseroles. Other members of the group "drummers" 

may list its contents and cd to it. Everyone else on the system, however 

(except root, who is always all powerful), is blocked from listing, reading, 

cd-ing, or doing anything else with the directory. 

 

The Sticky Bit 
Suppose that our drummer friend Biff wants to allow his fellow drummers 

not only to read his recipes, but also to add their own. As we saw last time, 

all he needs to do is set the "group-write" bit for this directory, like this: 
  chmod g+w ./extreme_casseroles 

 There's only one problem with this: "write" permissions include both the 

ability to create new files in this directory, but also to delete them. What's to 

stop one of his drummer pals from deleting other people's recipes? The 

"sticky bit." 

 In older UNIX operating systems, the sticky bit was used to write a file 

(program) to memory so it would load more quickly when invoked. On Linux, 

however, it serves a different function: When you set the sticky bit on a 

directory, it limits users' ability to delete things in that directory. That is, to 



delete a given file in the directory you must either own that file or own the 

directory, even if you belong to the group that owns the directory and 

group-write permissions are set on it. 

 To set the sticky bit, issue the command 
 chmod +t directory_name 

 In our example, this would be "chmod +t extreme_casseroles". If we set 

the sticky bit on extreme_casseroles and then do a long listing of the 

directory itself, using "ls -ld extreme_casseroles", we'll see 

 
  drwxrwx--T  8  biff  drummers  288  Mar 25 01:38 extreme_casseroles 

 

Note the "T" at the end of the permissions string. We'd normally expect to 

see either "x" or "-" there, depending on whether the directory is "other-

writable". "T" denotes that the directory is not "other-executable" but has 

the sticky bit set. A lowercase "t" would denote that the directory is other-

executable and has the sticky bit set. 

 To illustrate what effect this has, suppose a listing of the contents of 

extreme_casseroles/ looks like this (Listing 25-5): 

 

drwxrwxr-T  3 biff drummers  192 2004-08-10 23:39 . 
drwxr-xr-x  3 biff drummers 4008 2004-08-10 23:39 .. 
-rw-rw-r--  1 biff drummers   18 2004-07-08 07:40 chocolate_turkey_casserole.txt 
-rw-rw-r--  1 biff drummers   12 2004-08-08 15:10 pineapple_mushroom_suprise.txt 
drwxr-xr-x  2 biff drummers   80 2004-08-10 23:28 src 

Listing 25-5: Contents of extreme_casseroles/ 
 

 Suppose further that the user "crash" tries to delete the recipe-file 

"pineapple_mushroom_surprise.txt", which crash finds offensive. crash 

expects this to work, because he belongs to the group "drummers" and the 

group-write bit is set on this file.  



 However, remember, biff just set the parent directory's sticky bit. 

crash's attempted deletion will fail, as we see in Listing 25-6 (user input in 

boldface): 

 

crash@localhost:/extreme_casseroles> rm pineapple_mushroom_suprise.txt  
rm: cannot remove `pineapple_mushroom_suprise.txt': Operation not permitted 

Listing 25-6: Attempting Deletion With Sticky-Bit Set 
 

 The sticky bit only applies to the directory's first level downward. In 

Listing 25-5 you may have noticed that besides the two nasty recipes, 

extreme_casseroles/ also contains another directory, "src". The contents of 

src will not be affected by extreme_casserole's sticky bit (though the 

directory src itself will be). If biff wants to protect src's contents from group 

deletion, he'll need to set src's own sticky bit. 

 

Setuid and Setgid 
Now we come to two of the most dangerous permissions bits in the UNIX 

world: setuid and segid. If set on an executable binary file, the setuid bit 

causes that program to "run as" its owner, no matter who executes it. 

Similarly, the setgid bit, when set on an executable, causes that program to 

run as a member of the group that owns it, again regardless of who 

executes it. 

 By run as we mean "to run with the same privileges as." For example, 

suppose biff writes and compiles a C program, "killpineapple", that behaves 

the same as the command "rm 

/extreme_casseroles/pineapple_mushroom_surprise.txt". Suppose further 

that biff sets the setuid bit on killpineapple, with the command "chmod +s 

./killpineapple", and also makes it group executable. A long-listing of 

killpineapple might look like this: 

 



-rwsr-xr--  1 biff drummers   22 2004-08-11 23:01 killpineapple 

 

 If crash runs this program he will finally succeed in his quest to delete 

the Pineapple Mushroom Surprise recipe: killpineapple will run as though biff 

had executed it. When killpineapple attempts to delete 

pineapple_mushroom_suprise.txt, it will succeed because the file has user-

write permissions and killpineapple is acting as its user-owner, biff. 

 Note that setuid and setgid are very dangerous if set on any file owned 

by root or any other privileged account or group. We illustrate setuid and 

setgid in this discussion so you understand what they do, Not because you 

should actually use them for anything important. The command "sudo" is a 

much better tool for delegating root's authority. 

 Note that if you want a program to run setuid, that program must be 

group-executable or other-executable, for obvious reasons. Note also that 

the Linux kernel ignores the setuid and setgid bits on shell scripts; these bits 

only work on binary (compiled) executables. 

 setgid works the same way, but with group permissions: If you set the 

setgid bit on an executable file via the command "chmod g+s filename", and 

if the file is also "other-executable" (-r-xr-sr-x), then when that program is 

executed it will run with the group-ID of the file rather than of the user who 

executed it. 

 In the preceding example, if we change killpineapple's "other" 

permissions to "r-x" (chmod o+x killpineapple) and make it setgid (chmod 

g+s killpineapple), then no matter who executes killpineapple, killpineapple 

will exercise the permissions of the "drummers" group, because drummers is 

the group-owner of killpineapple.  

 

Setgid and Directories 
Setuid has no effect on directories, but setgid does, and it's a little 

nonintuitive. Normally, when you create a file, it's automatically owned by 



your user ID and your (primary) group ID. For example, if biff creates a file, 

the file will have a user-owner of "biff" and a group-owner of "drummers" 

(assuming that "drummers" is biff's primary group, as listed in /etc/passwd). 

 Setting a directory's setgid bit, however, causes any file created in that 

directory to inherit the directory's group-owner. This is useful if users on 

your system tend to belong to secondary groups and routinely create files 

that need to be shared with other members of those groups.  

 For example, if the user "animal" is listed in /etc/group as being a 

secondary member of "drummers" but is listed in /etc/passwd has having a 

primary group of "muppets", then animal will have no trouble creating files 

in the extreme_casseroles/ directory, whose permissions are set to drwxrwx-

-T. However, by default animal's files will belong to the group muppets, not 

to drummers, so unless animal manually reassigns his files' group-ownership 

(chgrp drummers newfile) or resets their other-permissions (chmod o+rw 

newfile), then other members of drummers won't be able to read or write 

animal's recipes. 

 If, on the other hand, biff (or root) sets the setgid bit on 

extreme_casseroles/ (chmod g+s extreme_casseroles), then when animal 

creates a new file therein, the file will have a group-owner of "drummers", 

just like extreme_casseroles/ itself. Note that all other permissions still 

apply: If the directory in question isn't group-writable, then the setgid bit 

will have no effect (because group members won't be able to create files 

inside it). 

 

Numeric Modes 
So far we've been using mnemonics to represent permissions: "r" for read, 

"w" for write, and so on. But internally, Linux uses numbers to represent 

permissions; only user-space programs display permissions as letters. The 



chmod command recognizes both mnemonic permission modifiers 

("u+rwx,go-w") and numeric modes. 

 A numeric mode consists of four digits: as you read left to right, these 

represent special permissions, user permissions, group permissions, and 

other permissions (where, you'll recall, "other" is short for "other users not 

covered by user permissions or group permissions"). For example, 0700 

translates to "no special permissions set, all user permissions set, no group 

permissions set, no other permissions set." 

 Each permission has a numeric value, and the permissions in each digit-

place are additive: The digit represents the sum of all permission-bits you 

wish to set. If, for example, user permissions are set to "7", this represents 

4 (the value for "read") plus 2 (the value for "write") plus 1 (the value for 

"execute").  

 As just mentioned, the basic numeric values are 4 for read, 2 for write, 

and 1 for execute. (I remember these by mentally repeating the phrase, 

"read-write-execute, 4-2-1.") Why no "3," you might wonder? Because (a) 

these values represent bits in a binary stream and are therefore all powers 

of 2; and (b) this way, no two combination of permissions have the same 

sum. 

 Special permissions are as follows: 4 stands for setuid, 2 stands for 

setgid, and 1 stands for sticky-bit. For example, the numeric mode 3000 

translates to "setgid set, sticky-bit set, no other permissions set" (which is, 

actually, a useless set of permissions). 

 Here's one more example of a numeric mode. If I issue the command 

"chmod 0644 mycoolfile," I'll be setting the permissions of "mycoolfile" as 

shown in Figure 25.2. 

 For a more complete discussion of numeric modes, see the Linux "info" 

page for "coreutils," node "Numeric Modes" (that is, enter the command 

"info coreutils numeric"). 



0

no special permissions set

user-owner may read or write to the file (6 = 4 + 2)

group-owners may read the file

"other" users may read the file

6 4 4

Figure 25.2  Permissions on mycoolfile  
 

Kernel Space versus User Space 
It is a simplification to say that users, groups, files, and directories are all 

that matter in the Linux DAC: Memory is important, too. Therefore, we 

should at least briefly discuss kernel space and user space.  

 Kernel space refers to memory used by the Linux kernel and its 

loadable modules (e.g., device drivers). User space refers to memory used 

by all other processes. Because the kernel enforces the Linux DAC and, in 

real terms, dictates system reality, it’s extremely important to isolate kernel 

space from user space. For this reason, kernel space is never swapped to 

hard disk.  

 It’s also the reason that only root may load and unload kernel modules. 

As we’re about to see, one of the worst things that can happen on a 

compromised Linux system is for an attacker to gain the ability to load 

kernel modules. 



 

25.4  LINUX VULNERABILITIES 
 

In this section we’ll discuss the most common weaknesses in Linux systems. 

 First, a bit of terminology. A vulnerability is a specific weakness or 

security-related bug in an application or operating system. A threat is the 

combination of a vulnerability, an attacker, and a means for the attacker to 

exploit the vulnerability (called an attack vector).  

 Historically, some of the most common and far-reaching vulnerabilities 

in default Linux installations (unpatched and unsecured) have been 

 

• Buffer overflows 

• Race conditions 

• Abuse of programs run “setuid root” 

• Denial of service (DoS) 

• Web application vulnerabilities 

• Rootkit attacks 

 

While you've already had exposure to most of these concepts earlier in this 

book, let's take a closer look at how several of them apply to Linux. 

 

Abuse of Programs Run “setuid root” 
As we discussed in the previous section, any program whose “setuid” 

permission bit is set will run with the privileges of the user that owns it, 

rather than those of the process or user executing it. A setuid root program 

is a root-owned program with its setuid bit set; that is, a program that runs 

as root no matter who executes it.  

 If a setuid root program can be exploited or abused in some way (for 

example, via a buffer overflow vulnerability or race condition), then 



otherwise unprivileged users may be able to use that program to wield 

unauthorized root privileges, possibly including opening a root shell (a 

command-line session running with root privileges).  

 Running setuid root is necessary for programs that need to be run by 

unprivileged users yet must provide such users with access to privileged 

functions (for example, changing their password, which requires changes to 

protected system files). But such a program must be programmed very 

carefully, with impeccable user-input validation, strict memory management, 

and so on. That is, the program must be designed to be run setuid (or 

setgid) root. Even then, a root-owned program should only have its setuid 

bit set if absolutely necessary.  

 Due to a history of abuse against setuid root programs, major Linux 

distributions no longer ship with unnecessary setuid-root programs. But 

system attackers still scan for them. 

 

Web Application Vulnerabilities 
This is a very broad category of vulnerabilities, many of which also fall into 

other categories in this list. It warrants its own category because of the 

ubiquity of the World Wide Web: there are few attack surfaces as big and 

visible as an Internet-facing Web site.  

 While Web applications written in scripting languages such as PHP, Perl, 

and Java may not be as prone to classic buffer overflows (thanks to the 

additional layers of abstraction presented by those languages’ interpreters), 

they’re nonetheless prone to similar abuses of poor input-handling, including 

cross-site scripting, SQL code injection, and a plethora of other 

vulnerabilities described in depth by the Open Web Application Security 

Project on the Project's Web site (http://www.owasp.org). 

 Nowadays, few Linux distributions ship with “enabled-by-default” Web 

applications (such as the default cgi scripts included with older versions of 



the Apache Web Server). However, many users install Web applications with 

known vulnerabilities, or write custom Web applications having easily 

identified and easily exploited flaws. 

 

Rootkit Attacks 
This attack, which allows an attacker to cover her tracks, typically occurs 

after root compromise: If a successful attacker is able to install a rootkit 

before being detected, all is very nearly lost.  

 Rootkits began as collections of “hacked replacements” for common 

UNIX commands (ls, ps, etc.) that behaved like the legitimate commands 

they replaced, except for hiding an attacker’s files, directories and 

processes. For example, if an attacker was able to replace a compromised 

Linux system’s ls command with a rootkit version of ls, then anyone 

executing the ls command to view files and directories would see everything 

except the attacker’s files and directories. 

 In the Linux world, since the advent of loadable kernel modules 

(LKMs), rootkits have more frequently taken the form of LKMs. This is 

particularly devious: An LKM rootkit does its business (covering the tracks 

of attackers) in kernel space, intercepting system calls pertaining to any 

user’s attempts to view the intruder’s resources.  

 In this way, files, directories, and processes owned by an attacker are 

hidden even to a compromised system’s standard, un-tampered-with 

commands, including customized software. Besides operating at a lower, 

more global level, another advantage of the LKM rootkit over traditional 

rootkits is that system integrity-checking tools such as Tripwire won’t 

generate alerts from system commands being replaced. 

 Luckily, even LKM rootkits do not always ensure complete invisibility for 

attackers. Many traditional and LKM rootkits can be detected with the script 

chkrootkit, available at www.chkrootkit.org. In general, however, if an 



attacker gets far enough to install an LKM rootkit, your system can be 

considered to be completely compromised; when and if you detect the 

breach (e.g., via a defaced Website, missing data, suspicious network traffic, 

etc.), the only way to restore your system with any confidence of completely 

shutting out the intruder will be to erase its hard disk (or replace it, if you 

have the means and inclination to analyze the old one), reinstall Linux, and 

apply all the latest software patches. 

 

25.5  LINUX SYSTEM HARDENING 
 

We’ve seen how Linux security is supposed to work, and how it most 

typically fails. The remainder of this chapter will focus on how to mitigate 

Linux security risks at the system and application levels. This section, 

obviously, deals with the first of these: OS-level security tools and 

techniques that protect the entire system. The final section in this chapter, 

on mandatory access controls, also describes system-level controls, but 

because this is both an advanced topic and an emerging technology (in the 

Linux world), we’ll consider it separately from the more fundamental controls 

in this section. 

 

OS Installation: Software Selection and Initial Setup 
Linux system security begins at operating system installation time: one of 

the most critical, system-impacting decisions a system administrator makes 

is what software will run on the system. Because it’s hard enough for the 

typical, commonly overworked system administrator to find the time to 

secure a system’s critical applications, an unused application is liable to be 

left in a default, unhardened and unpatched state. Therefore, it’s very 

important that from the start, careful consideration be given to which 

applications should be installed, and which should not. 



 What software should you not install? Common sense should be your 

guide: for example, an SMTP (e-mail) relay shouldn’t need the Apache Web 

Server; a database server shouldn’t need an office productivity suite such as 

OpenOffice; and so on. 

 Given the plethora of roles Linux systems play (desktops, servers, 

laptops, firewalls, embedded systems, to name just a few), it’s impossible to 

do much more than generalize in enumerating what software one shouldn’t 

install. Nonetheless, here is a list of software packages that should seldom, if 

ever, be installed on hardened servers, especially Internet-facing servers: 

 

• X Window System: Servers are usually remotely controlled via the 

Secure Shell, not locally via standard desktop sessions. Even if they are, 

X’s history of security vulnerabilities makes plaintext-console sessions a 

safer choice for local access. 

• RPC Services: Remote Procedure Call is a great convenience for 

developers, but both difficult to track through firewalls and too reliant 

on the easily spoofed UDP protocol. 

• R-Services: rsh, rlogin, and rcp use only cleartext authentication 

(which can be eavesdropped) or source-IP-address-based authentication 

(which can sometimes be spoofed). The Secure Shell (SSH), which uses 

strong encryption, was created specifically to replace these commands 

and should be used instead. 

• inetd: The Internet Daemon (inetd) is a poorly scaling means of 

starting critical network daemons, which should instead be started 

autonomously. inetd also tends, by default, to leave various 

unnecessary and potentially insecure services enabled, including RPC 

applications 

• SMTP Daemons: Traditionally, the Simple Mail Transport Protocol 

(SMTP) daemon Sendmail is enabled by default on many Linux 



distributions, despite Sendmail’s history of security problems. As it 

happens, this is unnecessary on any system that doesn’t need to receive 

relayed e-mail (i.e., that isn’t an actual SMTP server). If a system only 

needs to send e-mail, Sendmail can be invoked as needed as a 

command and should not be left running as a daemon.  

• Telnet and other cleartext-logon services: Because it passes logon 

credentials (usernames and passwords) over the network unencrypted, 

exposing them to eavesdroppers, telnet is no longer a viable tool for 

remote system access (and certainly not remote administration) via 

untrusted networks. The Secure Shell (SSH) is almost always a better 

choice than telnet. FTP, POP3, and IMAP also expose user credentials in 

this way, though many modern FTP, POP3, and IMAP server applications 

now support SSL or TLS encryption. 

  

In addition to initial software selection and installation, Linux installation 

utilities also perform varying amounts of initial system and software 

configuration, including some or all of the following: 

 

• Setting the root password 

• Creating a non-root user account 

• Setting an overall system security level (usually influencing initial file-

permission settings) 

• Enabling a simple host-based firewall policy 

• Enabling SELinux or Novell AppArmor (see Section 25.7) 

 

Patch Management 
Carefully selecting what gets installed (and what doesn’t get installed) on a 

Linux system is an important first step in securing it. All the server 

applications you do install, however, must be configured securely (the 



subject of Section 25.6), and they must also be kept up to date with security 

patches.  

 The bad news with patching is that you can never win the “patch rat-

race”: There will always be software vulnerabilities that attackers are able to 

exploit for some period of time before vendors issue patches for them. (As 

yet unpatchable vulnerabilities are known as zero-day, or 0-day, 

vulnerabilities.). 

 The good news is, modern Linux distributions usually include tools for 

automatically downloading and installing security updates, which can 

minimize the time your system is vulnerable to things against which patches 

are available. For example, Red Hat, Fedora, and CentOS include up2date 

(YUM can be used instead); SuSE includes YaST Online Update; and 

Debian uses apt-get, though you must run it as a cron job for automatic 

updates. 

 Note that on change-controlled systems, you should not run automatic 

updates, because security patches can, on rare but significant occasions, 

introduce instability. For systems on which availability and uptime are of 

paramount importance, therefore, you should stage all patches on test 

systems before deploying them in production. 

 

Network-Level Access Controls 
One of the most important attack- vectors in Linux threats is the network. A 

layered approach to security addresses not only actual vulnerabilities (e.g., 

patching and application-hardening), but also the means by which attackers 

might exploit them (e.g., the network). Network-level access controls (that 

is, controls that restrict access to local resources based on the IP addresses 

of the networked systems attempting to access them) are therefore an 

important tool in Linux security. 

 



LIBWRAPPERS AND TCP WRAPPERS 

 One of the most mature network access control mechanisms in Linux is 

libwappers. In its original form, the software package TCP Wrappers, the 

daemon tcpd is used as a “wrapper” process for each service initiated by 

inetd.  

 Before allowing a connection to any given service, tcpd first evaluates 

access controls defined in the files /etc/hosts.allow and /etc/hosts.deny: If 

the transaction matches any rule in hosts.allow (which tcpd parses first), it’s 

allowed. If no rule in hosts.allow matches, tcpd then evaluates the 

transaction against the rules in hosts.deny; if any rule in hosts.deny 

matches, the transaction is logged and denied, but is otherwise permitted.  

 These access controls are based on the name of the local service being 

connected to, on the source IP address or hostname of the client attempting 

the connection, and on the username of the client attempting the connection 

(that is, the owner of the client process). Note that client usernames are 

validated via the ident service, which unfortunately is trivially easy to forge 

on the client side and makes this criterion’s value questionable. 

 The best way to configure TCP Wrappers access controls is therefore to 

set a “deny all” policy in hosts.deny, such that the only transactions 

permitted are those explicitly specified in hosts.allow. 

 Because, as mentioned earlier, inetd is essentially obsolete, TCP 

Wrappers is no longer used as commonly as libwrappers, a system library 

that allows applications to defend themselves by leveraging /etc/hosts.allow 

and /etc/hosts.deny without requiring tcpd to act as an intermediary. In 

other words, libwrapper-aware applications can use the access controls in 

hosts.allow and hosts.deny via system calls provided by libwrappers. 

 

USING IPTABLES FOR "LOCAL FIREWALL" RULES 

 While libwrappers and TCP Wrappers are ubiquitous and easy to use, 

neither is nearly so powerful as the Linux kernel’s native firewall mechanism, 



netfilter. Because netfilter is commonly referred to by the name of its user-

space front end, iptables, we’ll use the latter term here.  

 iptables is as useful run on multiinterface firewall systems that protect 

large networks, as it is when run on ordinary servers and desktop systems 

for local protection. Unsurprisingly, the iptables command has a steep 

learning curve, particularly for users who aren’t network engineers. (Entire 

books, such as [SUEH05], are dedicated to this one command!) 

 Nearly all Linux distributions, however, now include utilities for 

automatically generating “personal” (local) firewall rules, especially at 

installation time. Typically, they prompt the administrator/user for local 

services that external hosts should be allowed to reach, if any (e.g., HTTP on 

TCP port 80, HTTPS on TCP port 443, and SSH on TCP port 22), and then 

generate rules that 

 

• Allow incoming requests to those services;  

• Block all other inbound (externally-originating) transactions; and 

• Allow all outbound (locally-originating) services;  

 

 Note the last item: The assumption here is that all outbound network 

transactions are legitimate. However, this assumption does not hold if the 

system is compromised by a human attacker or by malware (e.g., a worm). 

On the one hand, if an attacker achieves root compromise, he or she can 

reconfigure iptables anyhow; on the other hand, if an attacker doesn’t quite 

make it to root, then granular “egress rules” (allowing only selected 

outbound transactions) can at least limit the attacker’s ability to connect 

back to his or her home system, scan and attack other systems, and engage 

in other potentially harmful network activity. 

 In cases in which this level of caution is justified, it may be necessary to 

create more complex iptables policies than your Linux installer’s firewall 



wizard can provide. Many people manually create their own startup script for 

this purpose (an iptables “policy” is actually just a list of iptables 

commands), but a tool such as Shorewall or Firewall Builder may instead be 

used. 

 

Anti-Virus Software 
Historically, Linux hasn’t been nearly so vulnerable to viruses as other 

operating systems (e.g., Windows). This may be due less to Linux’s being 

inherently more secure than to its lesser popularity as a desktop platform: 

Virus writers wanting to maximize the return on their efforts prefer to target 

Windows because of its ubiquity.  

 To some extent, then, Linux users have tended not to worry about 

viruses. To the degree that they have, most Linux system administrators 

have tended to rely on keeping up to date with security patches for 

protection against malware, which is arguably a more proactive technique 

than relying on signature-based antivirus tools. 

 And indeed, prompt patching of security holes is an effective protection 

against worms, which have historically been a much bigger threat against 

Linux systems than viruses. A worm is simply an automated network attack 

that exploits one or more specific application vulnerabilities. If those 

vulnerabilities are patched, the worm won’t infect the system.  

 Viruses, however, typically abuse the privileges of whatever user 

unwittingly executes them. Rather than actually exploiting a software 

vulnerability, the virus simply “runs as” the user. This may not have system-

wide ramifications so long as that user isn’t root, but even relatively 

unprivileged users can execute network client applications, create large files 

that could fill a disk volume, and perform any number of other problematic 

actions.  



 Unfortunately, there’s no security patch to prevent users from double-

clicking on e-mail attachments or loading hostile Web pages. Furthermore, 

as Linux’s popularity continues to grow, especially as a general-purpose 

desktop platform (versus its currently-prevalent role as a  back-end server 

platform), we can expect Linux viruses to become much more common. 

Sooner or later, therefore, antivirus software will become much more 

important on Linux systems than it is presently.  

 (Nowadays, it’s far more common for antivirus software on Linux 

systems to be used to scan FTP archives, mail queues, etc., for viruses that 

target other systems than to be used to protect the system the antivirus 

software actually runs on.) 

 There are a variety of commercial and free antivirus software packages 

that run on (and protect) Linux, including products from McAfee, Symantec, 

and Sophos; and the free, open-source tool ClamAV. 

 

User Management 
As you’ll recall from Sections 25.2 and 25.3, the guiding principles in Linux 

user account security are as follows: 

 

• Be very careful when setting file and directory permissions; 

• Use group memberships to differentiate between different roles on your 

system; and  

• Be extremely careful in granting and using root privileges.  

 

Let’s discuss some of the nuts and bolts of user- and group account 

management, and delegation of root privileges. First, some commands.  

 You’ll recall that in Section 25.3 we used the chmod command to set 

and change permissions for objects belonging to existing users and groups. 

To create, modify, and delete user accounts, use the useradd, usermod, 



and userdel commands, respectively. To create, modify, and delete group 

accounts, use the groupadd, groupmod, and groupdel commands, 

respectively. Alternatively, you can simply edit the file /etc/passwd 

directly to create, modify, or delete users, or edit /etc/group to create, 

modify, or delete groups.  

 Note that initial (primary) group memberships are set in each user’s 

entry in /etc/passwd; supplementary (secondary) group memberships are 

set in /etc/group. (You can use the usermod command to change either 

primary or supplementary group memberships for any user.) To change your 

password, use the passwd command. If you’re logged on as root, you can 

also use this command to change other users’ passwords.  

 

PASSWORD AGING 

 Password aging (that is, maximum and minimum lifetime for user 

passwords) is set globally in the files /etc/login.defs and 

/etc/default/useradd, but these settings are only applied when new user 

accounts are created. To modify the password lifetime for an existing 

account, use the change command.  

 As for the actual minimum and maximum password ages, passwords 

should have some minimum age to prevent users from rapidly “cycling 

through” password changes in attempts to reuse old passwords; seven days 

is a reasonable minimum password lifetime. Maximum lifetime is trickier: If 

this is too long, the odds of passwords being exposed before being changed 

will increase, but if it’s too short, users frustrated with having to change 

their passwords frequently may feel justified in selecting easily guessed but 

also easily remembered passwords, writing passwords down, and otherwise 

mistreating their passwords in the name of convenience. Sixty days is a 

reasonable balance for many organizations.  



 In any event, it’s much better to disable or delete defunct user accounts 

promptly, and to educate users on protecting their passwords than it is to 

rely too much on password aging. 

 

"ROOT DELEGATION:" SU AND SUDO 

 As we’ve seen, the fundamental problem with Linux and UNIX security is 

that far too often, permissions and authority on a given system boil down to 

"root can to anything, users can't do much of anything." Provided you know 

the root passwork, you can use the su command to promote yourself to root 

from whatever user you logged in as. Thus, the su command is as much a 

part of this problem as it is part of the solution. 

 Sadly, it's much easier to do a quick su to become root for a while than 

it is to create a granular system of group memberships and permissions that 

allows administrators and sub-administrators to have exactly the 

permissions they need. You can use the su command with the "-c" flag, 

which allows you to specify a single command to run as root rather than an 

entire shell session (for example, "su -c rm somefile.txt"), but because this 

requires you to enter the root password, everyone who needs to run a 

particular root command via this method will need to be given the root 

password. But it's never good for more than a small number of people to 

know root's password. 

 Another approach to solving the "root takes all" problem is to use 

SELinux’s Role-Based Access Controls (RBAC) (see Section 25.7), which 

enforce access controls that reduce root's effective authority. However, this 

is much more complicated than setting up effective groups and group 

permissions. (However, adding that degree of complexity may be perfectly 

appropriate, depending on what’s at stake.) 

 A reasonable middle ground is to use the sudo command, which is a 

standard package on most Linux distributions. "sudo" is short for "superuser 



do", and it allows users to execute specified commands as root without 

actually needing to know the root password (unlike su). sudo is configured 

via the file /etc/sudoers, but you shouldn't edit this file directly; rather, 

you should use the command visudo, which opens a special vi (text editor) 

session. 

 As handy as it is, sudo is a very powerful tool, so use it wisely: Root 

privileges are never to be trifled with. It really is better to use user and 

group permissions judiciously than to hand out root privileges even via sudo, 

and it's better still to use an RBAC-based system like SELinux if feasible. 

 

Logging 
Logging isn’t a proactive control; even if you use an automated “log 

watcher” to parse logs in real time for security events, logs can only tell you 

about bad things that have already happened. But effective logging helps 

ensure that in the event of a system breach or failure, system administrators 

can more quickly and accurately identify what happened and thus most 

effectively focus their remediation and recovery efforts. 

 On Linux systems, system logs are handled either by the ubiquitous 

Berkeley Syslog daemon (syslogd) in conjunction with the kernel log 

daemon (klogd), or by the much-more-feature-rich Syslog-NG. System log 

daemons receive log data from a variety of sources (the kernel via 

/proc/kmsg, named pipes such as /dev/log, or the network), sort by facility 

(category) and severity, and then write the log messages to log files (or to 

named pipes, the network, etc.). Figure 25.3 lists the facilities and 

severities, both in their mnemonic and numeric forms, of Linux logging 

facilities, plus syslogd’s actions (log targets). 



Facilities

Usage of ! and = as prefixes with priorities

auth
auth-priv

cron
daemon

kern
lpr

mail
mark
news

syslog
user

uucp
local {0-

7}
* {"any

facility"}

/some/file
-/some/file

/some/pipe

dev/some/tty_or_console

@remote.hostname.or.IP

username1, username2, etc

*

*.notice (no prefix)

*.!notice

*.=notice

*.!=notice

= "any event with priority of
notice or higher"

= "no event with priority of
notice or higher"

= "only events with priority of notice"

= "no events with priority of  notice"

(log to specified file)
(log to spec'd file

but don't sync afterwards)
(log to specified

pipe)

(log to specified console)

(log to specified remote host)

(log to these users' screens)
(log to all users' screens)

n/a
7
6
5
4
3
2
1
0

n/a

none
debug

info
notice

warning
err
crit

alert
emerg

* ("any
priority")

4
10

9
3
0
6
2

n/a
7
5
1
8

16-23
n/a

ActionsPriorities (in
increasing

order)

Priority
Codes†

Facility
Codes†

†Numeric facility codes should not be used under Linux;
they're here for reference only, as some other syslogd implementations
(e.g., Cisco IOS) do use them

Figure 25.3    Syslogd Reference  
 

 Syslog-NG, the creation of Hungarian developer Balazs Scheidler, is 

preferable to syslogd for two reasons. First, it can use a much wider variety 

of log-data sources and destinations. Second, its “rules engine” (usually 

configured in /etc/syslog-ng/syslog-ng.conf) is much more flexible than 

syslogd’s simple configuration file (/etc/syslogd.conf), allowing you to create 



a much more sophisticated set of rules for evaluating and processing log 

data.  

  Naturally, both syslogd and Syslog-NG install with default settings for 

what gets logged, and where. While these default settings are adequate in 

many cases, you should never take for granted that they are. At the very 

least, you should decide what combination of local and remote logging to 

perform. If logs remain local to the system that generates them, they may 

be tampered with by an attacker. If some or all log data are transmitted 

over the network to some central log-server, audit trails can be more 

effectively preserved, but log data may also be exposed to network 

eavesdroppers.  

 (The risk of eavesdropping is still another reason to use Syslog-NG; 

whereas syslogd only supports remote logging via the connectionless UDP 

protocol, Syslog-NG also supports logging via TCP, which can be encrypted 

via a TLS “wrapper” such as Stunnel or Secure Shell.) 

 Local log files must be carefully managed. Logging messages from too 

many different log facilities to a single file may result in a logfile that is 

difficult to cull useful information from; having too many different log files 

may make it difficult for administrators to remember where to look for a 

given audit trail. And in all cases, log files must not be allowed to fill disk 

volumes. 

 Most Linux distributions address this last problem via the logrotate 

command (typically run as a cron job), which decides how to rotate (archive 

or delete) system and application log files based both on global settings in 

the file /etc/logrotate.conf and on application-specific settings in the scripts 

contained in the directory /etc/logrotate.d/.  

 The Linux logging facility provides a local “system infrastructure” for 

both the kernel and applications, but it’s usually also necessary to configure 



applications themselves to log appropriate levels of information. We revisit 

the subject of application-level logging in Section 25.6. 

 

Other System Security Tools 
Other tools worth mentioning that can greatly enhance Linux system 

security include the following: 

 

• Bastille: A comprehensive system-hardening utility that educates as it 

secures 

• Tripwire: A utility that maintains a database of characteristics of crucial 

system files and reports all changes made to them 

• Snort: A powerful free Intrusion Detection System (IDS) that detects 

common network-based attacks 

• Nessus: A modular security scanner that probes for common system 

and application vulnerabilities 

 

25.6  APPLICATION SECURITY 
 

Application security is a large topic; entire chapters in [BAUE05] are devoted 

to securing particular applications. However, many security features are 

implemented in similar ways across different applications. In this brief but 

important section, we’ll examine some of these common features. 

 

Running as an Unprivileged User/Group 
Remember that in Linux and other UNIX-like operating systems, every 

process “runs as” some user. For network daemons in particular, it’s 

extremely important that this user not be root; any process running as root 

is never more than a single buffer overflow or race condition away from 

being a means for attackers to achieve remote root compromise. Therefore, 



one of the most important security features a daemon can have is the ability 

to run as a nonprivileged user or group. 

 Running network processes as root isn’t entirely avoidable; for example, 

only root can bind processes to “privileged ports” (TCP and UDP ports lower 

than 1024). However, it’s still possible for a service’s parent process to run 

as root in order to bind to a privileged port, but to then spawn a new child 

process that runs as an unprivileged user, each time an incoming connection 

is made.  

 Ideally, the unprivileged users and groups used by a given network 

daemon should be dedicated for that purpose, if for no other reason than for 

auditability (i.e., if entries start appearing in /var/log/messages indicating 

failed attempts by the user ftpuser to run the command /sbin/halt, it will be 

much easier to determine precisely what’s going on if the ftpuser account 

isn’t shared by five different network applications). 

 

Running in a chroot Jail 
If an FTP daemon serves files from a particular directory, say, 

/srv/ftp/public, there shouldn’t be any reason for that daemon to have 

access to the rest of the file system. The chroot system call confines a 

process to some subset of /, that is, it maps a virtual “/” to some other 

directory (e.g., /srv/ftp/public). We call this directory to which we restrict 

the daemon a chroot jail. To the “chrooted” daemon, everything in the 

chroot jail appears to actually be in / (e.g., the “real” directory 

/srv/ftp/public/etc/myconfigfile appears as /etc/myconfigfile in the chroot 

jail). Things in directories outside the chroot jail (e.g., /srv/www or /etc.) 

aren’t visible or reachable at all. 

 Chrooting therefore helps contain the effects of a given daemon’s being 

compromised or hijacked. The main disadvantage of this method is added 

complexity: Certain files, directories, and special files typically must be 



copied into the chroot jail, and determining just what needs to go into the 

jail for the daemon to work properly can be tricky, though detailed 

procedures for chrooting many different Linux applications are easy to find 

on the World Wide Web.  

 Troubleshooting a chrooted application can also be difficult: Even if an 

application explicitly supports this feature, it may behave in unexpected 

ways when run chrooted. Note also that if the chrooted process runs as root, 

it can “break out” of the chroot jail with little difficulty. Still, the advantages 

usually far outweigh the disadvantages of chrooting network services. 

 

Modularity 
If an application runs in the form of a single, large, multipurpose process, it 

may be more difficult to run it as an unprivileged user; it may be harder to 

locate and fix security bugs in its source code (depending on how well 

documented and structured the code is); and it may be harder to disable 

unnecessary areas of functionality. In modern network service applications, 

therefore, modularity is a highly prized feature. 

 Postfix, for example, consists of a suite of daemons and commands, 

each dedicated to a different mail-transfer-related task. Only a couple of 

these processes ever run as root, and they practically never run all at the 

same time. Postfix therefore has a much smaller attack surface than the 

monolithic Sendmail. The popular Web server Apache used to be monolithic, 

but it now supports code modules that can be loaded at startup time as 

needed; this both reduces Apache’s memory footprint and reduces the threat 

posed by vulnerabilities in unused functionality areas. 

 

Encryption 
Sending logon credentials or application data over networks in clear text 

(i.e., unencrypted) exposes them to network eavesdropping attacks. Most 



Linux network applications therefore support encryption nowadays, most 

commonly via the OpenSSL library. Using application-level encryption is, in 

fact, the most effective way to ensure end-to-end encryption of network 

transactions. 

 The SSL and TLS protocols provided by OpenSSL require the use of 

X.509 digital certificates. These can be generated and signed by the user-

space openssl command. For optimal security, either a local or commercial 

(third-party) Certificate Authority (CA) should be used to sign all server 

certificates, but self-signed (that is, non-verifiable) certificates may also be 

used. [BAUE05] provides detailed instructions on how to create and use your 

own Certificate Authority with OpenSSL. 

 

Logging 
Most applications can be configured to log to whatever level of detail you 

want, ranging from “debugging” (maximum detail) to “none.” Some middle 

setting is usually the best choice, but you should not assume that the default 

setting is adequate. 

 In addition, many applications allow you to specify either a dedicated 

file to write application event data to, or a syslog facility to use when 

writing log data to /dev/log (see Section 25.5). If you wish to handle 

system logs in a consistent, centralized manner, it’s usually preferable for 

applications to send their log data to /dev/log. Note, however, that logrotate 

(also discussed in Section 25.5) can be configured to rotate any logs on the 

system, whether written by syslogd, Syslog-NG, or individual applications. 

 

25.7  MANDATORY ACCESS CONTROLS 
 

Linux (like most other general-purpose operating systems) uses a DAC 

security model, in which the owner of a given system object can set 



whatever access permissions on that resource he or she likes. Stringent 

security controls, in general, are optional. 

 In contrast, a computer with Mandatory Access Controls (MAC) has a 

global security policy that all users of the system are subject to. A user who 

creates a file on a MAC system generally may not set access controls on that 

file that are weaker than the controls dictated by the system security policy.  

 Compromising a system using a DAC-based security model is generally 

a simple matter of hijacking some process on that system that runs with 

root/Administrator privileges. On a MAC-based system, however, the only 

thing the superuser account is used for is maintaining the global security 

policy. Day-to-day system administration is performed using accounts that 

lack the authority to change the global security policy. As a result, it's 

impossible to compromise the entire system by attacking any one process. 

(Attacks on the policy-setting account are still possible, however; for 

example, by booting the system into single-user mode from its physical 

console.) 

 Unfortunately, while MAC schemes have been available on various 

platforms over the years, they have traditionally been much more 

complicated to configure and maintain than DAC-based operating systems. 

To create an effective global security policy requires detailed knowledge of 

the precise (intended) behavior of every application on the system. 

Furthermore, the more restrictive the security controls are on a given 

system, the less convenient that system becomes for its users to use.  

 Linux packagers Novell and Red Hat have addressed MAC complexity in 

similar ways. Novell’s SuSE Linux includes AppArmor, a partial MAC 

implementation that restricts specific processes but leaves everything else 

subject to the conventional Linux DAC. In Fedora and Red Hat Enterprise 

Linux, SELinux has been implemented with a policy that, like AppArmor, 



restricts key network daemons, but relies on the Linux DAC to secure 

everything else.  

 What about high-sensitivity, high-security, multiuser scenarios? In those 

cases a “pure” SELinux implementation may be deployed, in which all 

processes, system resources, and data are regulated by comprehensive, 

granular access controls. 

 Let’s take a closer look at SELinux and Novell AppArmor. 

 

SELinux 
SELinux is the NSA's powerful implementation of mandatory access controls 

for Linux. This power, however, comes at a cost: It is a complicated 

technology and can be time-consuming to configure and troubleshoot. In 

this section, we’ll discuss SELinux concepts and security models, ending with 

some pointers to more detailed information on managing SELinux. 

 

THE PROBLEM 

 As noted earlier, Linux security often seems to boil down to a cycle of 

researchers and attackers discovering new security vulnerabilities in Linux 

applications and kernels; vendors and developers scrambling to release 

patches, with attackers wreaking havoc against unpatched systems in the 

mean time; and hapless system administrators finally applying that week's 

or month's patches, only to repeat the entire trail of tears soon afterward. 

Unfortunately, there will always be zero-day (as-yet-unpatched) 

vulnerabilities. SELinux is a mandatory access control implementation that 

doesn't prevent zero-day attacks, but it's specifically designed to contain 

their effects. 

 For example, suppose I have a daemon called blinkend that is running 

as the user someguy, and this daemon is hijacked by an attacker. blinkend's 

sole function is to make a keyboard LED blink out jokes in Morse code, so 



you might think, well, the worst the attacker can do is blink some sort of 

insult, right? Wrong. The attacker can do anything the someguy account can 

do, which might include everything from executing the BASH shell to 

mounting CD-ROMs. 

 Under SELinux, however, the blinkend process would run in a narrowly 

defined domain of activity that would allow it to do its job (blinking the LED, 

possibly reading jokes from a particular text file, etc.). In other words, 

blinkend's privileges would not be determined based on its user/owner; 

rather, they would be determined by much more narrow criteria. Provided 

blinkend's domain was sufficiently strictly defined, even a successful attack 

against the blinkend process would, at worst, result in naughty Morse code 

blinking. 

 That, in a nutshell, is the problem SELinux was designed to solve.  

 

WHAT SELINUX DOES 

 By now you should understand how Linux’s Discretionary Access 

Controls work. Even under SELinux, the Linux DACs still apply: If the 

ordinary Linux permissions on a given file block a particular action (for 

example, user A attempting to write file B), that action will still be blocked, 

and SELinux won't bother evaluating that action. But if the ordinary Linux 

permissions allow the action, SELinux will evaluate the action against its own 

security policies before allowing it to occur. 

 So how does SELinux do this? The starting point for SELinux seems 

similar to the DAC paradigm: It evaluates actions attempted by subjects 

against objects. 

 In SELinux, "subjects" are always processes. This may seem 

counterintuitive: aren't subjects sometimes end users? Not exactly: users 

execute commands (processes). SELinux naturally pays close attention to 

who or what executes a given process, but the process itself, not the human 

being who executed it, is considered to be the subject.  



 In SELinux, we call actions "permissions," just like we do in the Linux 

DAC. The objects that are acted on, however, are different. Whereas in the 

Linux DAC model objects are always files or directories, in SELinux objects 

include not only files and directories but also other processes and various 

system resources in both kernel space and userland.  

 SELinux differentiates among a wide variety of object "classes" 

(categories) — dozens, in fact. You can read the complete list in the 

document "An Overview of Object Classes and Permissions," in the Premium 

Content Web site for this book. Not surprisingly, "file" is the most commonly 

used object class. Other important object classes include 

 

• dir 

• socket 

• tcp_socket 

• unix_stream_socket 

• file system 

• node 

• xserver 

• cursor 

 

 Each object class has a particular set of possible permissions (actions). 

This makes sense; there are things you can do to directories, for example, 

that simply don't apply to, say, X Servers. Each object class may have both 

"inherited" permissions that are common to other classes (for example, 

"read"), plus "unique" permissions that apply only to it. Just a few of the 

unique permissions associated with the "dir" class are 

 

• search 

• rmdir 



• getattr 

• remove_name 

• reparent 

 

 These class names or actions are not explained her; because you don't 

need to understand them for their own sake; it is sufficient to know that 

SELinux goes much, much further than Linux DAC's simple model of users, 

groups, files, directories, and read/write/execute permissions. 

 As you might guess, SELinux would be impossible to use if you had to 

create an individual rule for every possible action by every possible subject 

against every possible object. SELinux gets around this in two ways: (1) by 

taking the stance "that which is not expressly permitted is denied," and (2) 

by grouping subjects, permissions, and objects in various ways. Both of 

these points have positive and negative ramifications.  

 The "default deny" stance allows you to only have to create 

rules/policies that describe the behaviors you expect and want, instead of all 

possible behaviors. It's also, by far, the most secure design principle any 

access control technology can have. However, it also requires you to 

anticipate all possible allowable behavior by (and interaction between) every 

daemon and command on your system.  

 (This is why the "targeted" SELinux policy in Red Hat Enterprise Linux 4 

and Fedora Core 3 actually implements what amounts to a "restrict only 

these particular services" policy, giving free rein to all processes not 

explicitly covered in the policy. No, this is not the most secure way to use 

SELinux, or even the way SELinux was originally designed to be used. But as 

we'll see, it's a justifiable compromise on general-purpose systems.) 

 The upside of SELinux's various groupings (roles, types/domains, 

contexts, etc.) is, obviously, improved efficiency over having to always 



specify individual subjects, permissions, and objects. The downside is still 

more terminology and layers of abstraction. 

 

SECURITY CONTEXTS: USERS, ROLES, AND DOMAINS 

 Every individual subject and object controlled by SELinux is governed by 

a security context, each consisting of a user, a role, and a domain (also 

called a type).  

 A user is what you'd expect: an individual user, whether human or 

daemon. However, SELinux maintains its own list of users, separately from 

the Linux DAC system. In security contexts for subjects, the user label 

indicates which SELinux user account's privileges the subject (which, again, 

must be a process) is running. In security contexts for objects, the user label 

indicates which SELinux user account owns the object.  

 A role is sort of like a group in the Linux DAC system, in that a role may 

be assumed by any of a number of preauthorized users, each of whom may 

be authorized to assume different roles at different times. The difference is 

that in SELinux, a user may only assume one role at a time and may only 

switch roles if and when authorized to do so. The role specified in a security 

context indicates which role the specified user is operating within for that 

particular context. 

 Finally, a domain is sort of like a sandbox: a combination of subjects 

and objects that may interact with each other. Domains are also called 

types, and although domains and types are two different things in the Flask 

security model on which the NSA based SELinux, in SELinux "domain" and 

"type" are synonymous.  

 This model, in which each process (subject) is assigned to a domain, 

wherein only certain operations are permitted, is called Type Enforcement 

(TE), and it's the heart of SELinux. Type Enforcement also constitutes the 

bulk of the SELinux implementation in Fedora and Red Hat Enterprise Linux. 



 There's a bit more to it than that, but before we go into further depth, 

we present an example scenario to illustrate security contexts. 

 Suppose we're securing my LED-blinking daemon, blinkend, with 

SELinux. As you'll recall, it's run with the privileges of the account 

"someguy," and it reads the messages it blinks from a text file, which we'll 

call /home/someguy/messages.txt.  

 Under SELinux, we'll need an SELinux user called "someguy" 

(remember, this is in addition to the underlying Linux DAC's "someguy" 

account, that is, the one in /etc/passwd). We'll also need a role for someguy 

to assume in this context; we could call it "blink_r" (by convention, SELinux 

role names end with "_r").  

 The heart of blinkend's security context will be its domain, which we'll 

call "blinkend_t" (by convention, SELinux domain names end with "_t" — "t" 

is short for "type"). blinkend_t will specify rules that allow the blinkend 

process to read the file /home/someguy/messages.txt and then write data 

to, say, /dev/numlockled.  

 The file /home/someguy/messages.txt and the special file 

/dev/numlockled will need security contexts of their own. Both of these 

contexts can probably use the blinkend_t domain, but because they describe 

objects, not subjects, they'll specify the catch-all role "object_r." Objects, 

which by definition are passive in nature (stuff gets done to them, not the 

other way around), generally don't assume meaningful roles, but every 

security context must include a role. 

 

DECISION-MAKING IN SELINUX 

 There are two types of decisions SELinux must make concerning 

subjects, domains, and objects: access decisions and transition decisions. 

Access decisions involve subjects doing things to objects that already exist, 

or creating new things that remain in the expected domain. Access decisions 



are easy to understand; in our example, "may blinkend read 

/home/someguy/messages.txt?" is just such a decision. 

 Transition decisions, however, are a bit more subtle. They involve the 

invocation of processes in different domains that the one in which the 

subject process is running; or the creation of objects in different types than 

their parent directories. (Note: Even though "domain" and "type" are 

synonymous in SELinux, by convention we usually use "domain" when 

talking about processes, and "type" with files.) 

 That is, normally, if one process executes another, the second process 

will by default run within the same SELinux domain. If, for example, 

blinkend spawns a child process, the child process will run in the blinkend_t 

domain, the same as its parent. If, however, blinkend tries to spawn a 

process into some other domain, SELinux will need to make a domain 

transition decision to determine whether to allow this. Like everything else, 

transitions must be explicitly authorized in the SELinux policy. This is an 

important check against privilege-escalation attacks. 

 File transitions work in a similar way: If a subject creates a file in some 

directory (and if this file creation is allowed in the subject's domain), the 

new file will normally inherit the security context (user, role, and domain) of 

the parent directory. For example, if blinkend's security context allows it to 

write a new file in /home/someguy/, say, /home/someguy/error.log, then 

error.log will inherit the security context (user, role, and type) of 

/home/someguy/. If, for some reason, blinkend tries to label error.log with a 

different security context, SELinux will need to make a type transition 

decision. 

 Transition decisions are necessary because the same file or resource 

may be used in multiple domains/types; process and file transitions are a 

normal part of system operation. But if domains can be changed arbitrarily, 

attackers will have a much easier time doing mischief. 



 

ROLE-BASED ACCESS CONTROL 

 Besides Type Enforcement, SELinux includes a second model, called 

Role-Based Access Control (RBAC). RBAC builds on the concepts we've 

already discussed, providing controls especially useful where real human 

users, as opposed to daemons and other automated processes, are 

concerned.  

 RBAC is relatively straightforward. To paraphrase [MCCA05], SELinux 

rules specify what roles each user may assume; other rules specify under 

what circumstances each user may transition from one authorized role to 

another (unlike groups in the Linux DAC, in RBAC one user may not assume 

more than one role at a time); and still other rules specify the domains 

each authorized role may operate in. 

 

MULTILEVEL SECURITY 

 The third security model implemented in SELinux is Multilevel Security 

(MLS), which is based on the Bell-LaPadula (BLP) model. Chapter 13 

describes the BLP model in detail.  In SELinux, MLS is enforced via file 

system labeling. 

 

MANAGING SELINUX POLICIES 

 Unfortunately, creating and maintaining SELinux policies is complicated 

and time-consuming; a single SELinux policy may consist of hundreds of 

lines of text. In Red Hat and Fedora, this complexity is mitigated by the 

inclusion of a default “targeted” policy that defines types for selected 

network applications but that allows everything else to run with only Linux 

DAC controls. You can use RHEL and Fedora’s system-config-securitylevel 

GUI to configure the targeted policy.  

 SELinux policies take the form of various, lengthy text files in 

/etc/security/selinux. SELinux commands common to all SELinux 



implementations (besides RHEL and Fedora) are chcon, checkpolicy, 

getenforce, newrole, run_init, setenforce, and setfiles. Tresys 

(http://www.tresys.com), however, maintains a suite of free, mainly GUI-

based, SELinux tools that are a bit easier to use, including SePCuT, SeUser, 

Apol, and SeAudit.  

 For more information on using RHEL’s SELinux implementation, see 

[COKE05]. See [MCCA05] for more information on creating and maintaining 

custom SELinux policies. 

 

Novell AppArmor 
AppArmor, Novell’s MAC implementation for SuSE, represents a major step 

forward in making MAC technology a feasible option for system 

administrators who want strong security controls but don't have the time or 

patience to configure and maintain SELinux. As of this writing, AppArmor is 

only available for SuSE Linux and SuSE Linux Enterprise. AppArmor, like 

SELinux, is built on top of the Linux Security Modules.  

 As we’ve seen, SELinux implements three different types of MAC: Type 

Enforcement, Role Based Access Controls, and Multi Level Security. In 

contrast, Novell AppArmor has a more modest objective: to restrict the 

behavior of selected applications in a very granular but targeted way. In 

focusing on applications (at the expense of roles and data classification), 

AppArmor is built on the assumption that the single biggest attack vector on 

most systems is application vulnerabilities. If the application's behavior is 

restricted, then the behavior of any attacker who succeeds in exploiting 

some vulnerability in that application will also be restricted. 

 For example, suppose you're running a Web application that runs as 

user "nobody" and uses user input to update a local text file. On a typical 

system, if an attacker compromised that Web application (for example by 

sending unexpected input) the attacker might succeed in gaining a remote 



shell with the privileges of "nobody." If that Web application were protected 

by AppArmor, however, all the attacker would be able to do would be to 

alter that single text file; it would neither be possible for the attacker to 

spawn a remote shell (an unexpected action) nor to read or write any other 

files. 

 Comprehensive? By no means: for non-AppArmor-protected 

applications, the usual (limited) user/group permissions still apply; normally, 

only a subset of applications on the system even have AppArmor profiles; 

and AppArmor provides no controls addressing data classification. To use 

SELinux terminology, AppArmor provides only nonglobal Type Enforcement, 

no Role-Based Access Controls, and no Multi Level Security. 

 For the most part, root is still root, and if you use root access in a 

sloppy or risky fashion, AppArmor generally won't protect you from yourself. 

But if an AppArmor protected application runs as root and becomes 

compromised somehow, that application's access will be contained, root 

privileges notwithstanding, because those privileges are trumped by the 

AppArmor policy (which is enforced at the kernel level, courtesy of Linux 

Security Modules). 

 AppArmor is therefore only a partial implementation of Mandatory 

Access Controls. But on networked systems, application security is arguably 

the single most important area of concern, and that's what AppArmor zeroes 

in on. What's more, AppArmor provides application security via an easy to 

use graphical user interface that is fully integrated with SuSE’s system 

administration tool, YaST.  

 We are stopping well short of suggesting that AppArmor is 

interchangeable with SELinux. If, for example, you run Linux in a true 

multiuser environment (in which users have shell accounts) or use a Linux 

system to process highly sensitive data, there really is no substitute for the 

comprehensive layers of access controls in SELinux.  
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